On estimation of monotone and concave frontier functions
ثبت نشده
چکیده
When analyzing the productivity of rms one may want to compare how the rms transform a set of inputs x typically labor energy or capital into an output y typically a quantity of goods produced The economic e ciency of a rm is then de ned in terms of its ability of operating close to or on the production frontier which is the boundary of the production set The frontier function gives the maximal level of output attainable by a rm for a given combination of its inputs The e ciency of a rm may then be estimated via the distance between the attained production level and the optimal level given by the frontier function From a statistical point of view the frontier function may be viewed as the upper boundary of the support of the population of rms density in the input and output space It is often reasonable to assume that the production frontier is a concave monotone function Then a famous estimator in the univariate input and output case is the data envelopment analysis DEA estimator which is the lowest concave monotone increasing function covering all sample points This estimator is biased downwards since it never exceeds the true production frontier In this paper we derive the asymptotic distribution of the DEA estimator which enables us to assess the asymptotic bias and hence to propose an improved bias corrected estimator This bias corrected estimator involves consistent estimation of the density function as well as of the second derivative of the production frontier We also discuss brie y the construction of asymptotic con dence intervals The nite sample performance of the bias corrected estimator is investigated via a simulation study and the procedure is illustrated for a real data example AMS subject classi cation Primary G secondary E Gxx
منابع مشابه
On Estimation of Monotone and Concave Frontier Functions
When analyzing the productivity of rms, one may want to compare how the rms transform a set of inputs x (typically labor, energy or capital) into an output y (typically a quantity of goods produced). The economic eeciency of a rm is then deened in terms of its ability of operating close to or on the production frontier which is the boundary of the production set. The frontier function gives the...
متن کاملOn estimation of monotone and concave frontier functions
When analyzing the productivity of rms one may want to compare how the rms transform a set of inputs x typically labor energy or capital into an output y typically a quantity of goods produced The economic e ciency of a rm is then de ned in terms of its ability of operating close to or on the production frontier which is the boundary of the production set The frontier function gives the maximal...
متن کاملA Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator
In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...
متن کاملThe silhouette, concentration functions, and ML-density estimation under order restrictions
Based on empirical Levy-type concentration functions a new graphical representation of the ML-density estimator under order restrictions is given. This representation generalizes the well-known representation of the Grenander estimator of a monotone density as the slope of the least concave majorant of the empirical distribution function. From the given representation it follows that a density ...
متن کاملDuality between quasi-concave functions and monotone linkage functions
A function F defined on all subsets of a finite ground set E is quasiconcave if F (X∪Y ) ≥ min{F (X), F (Y )} for all X, Y ⊂ E. Quasi-concave functions arise in many fields of mathematics and computer science such as social choice, theory of graph, data mining, clustering and other fields. The maximization of quasi-concave function takes, in general, exponential time. However, if a quasi-concav...
متن کامل